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Abstract. On the basis of a representation in terms of photon-number states we derive an
analytically solvable set of ordinary differential equations for the matrix elements of the density
operator belonging to the Jaynes–Cummings model. We allow for atomic detuning, spontaneous
emission, and cavity damping, but we do not take into account the presence of thermal photons.
The exact results are employed to perform a careful investigation of the evolution in time of
atomic inversion and von Neumann entropy. A factorization of the initial density operator is
assumed, with the privileged field mode being in a coherent state. We invoke the mathematical
notion of maximum variation of a function to construct a measure for entropy fluctuations. In the
undamped case the measure is found to increase during the first few revivals of Rabi oscillations.
Hence, the influence of the surroundings on the atom does not decrease monotonically from
time zero onwards. A further non-Markovian feature of the dynamics is given by the strong
dependence of our measure on the initial atomic state, even for times at which damping brings
about irreversible decay. For weak damping and high initial energy density the atomic evolution
exhibits a crossover between quasireversible revival dynamics and irreversible Markovian decay.
During this stage the state of maximum entropy acts as an attractor for the trajectories in atomic
phase space. Subsequently, all trajectories follow a unique route to the atomic ground state,
for which the off-diagonals of the atomic density matrix equal zero. From our entropy studies
one learns what kind of difficulties must be overcome in establishing formulae for entropy
production, the use of which is not limited to semigroup-induced dynamics.

1. Introduction

Quantum processes of a dissipative nature can be described in a fundamental and
mathematically rigorous manner by coupling the quantum system under consideration to
a second system, usually called the reservoir [1, 2]. All basic constraints of quantum
mechanics are obeyed, because the density operator for the system and reservoir evolves
with the von Neumann equation. The latter gives rise to a unitary time evolution. The
dynamical behaviour of the quantum system alone is of nonunitary character in general. It
is dictated by the reduced density operator, which is obtained by taking a partial trace of
the full density operator. Depending on the number of degrees of freedom contained in the
reservoir, the dynamics of the open quantum system is of quasiperiodic or irreversible type.

The reduced density operator does not only give access to all observables, but also allows
us to consider the entropy of the dissipative quantum system. In computing this quantity,
preference must be given to the von Neumann functional [3]. It can be constructed from first
principles [4], and has been shown to serve as an important link between quantum mechanics
and statistical physics [5–8]. For example, inspired by the second law of thermodynamics
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[9], one can employ the von Neumann entropy to make statements on the subject of quantum
irreversibility. Theorems on monotonic evolution of entropy [10] and formulae for entropy
production have been established [11]. Of course, one is not obliged to consider only the
von Neumann entropy [12].

In [10, 11] it has been assumed that the reduced density operator satisfies a master
equation of Markovian type [13, 14]. If one wishes to refrain from this assumption, then it
becomes much harder to derive principles that are akin to the second law of thermodynamics.
Mathematically rigorous proposals for entropy production, which can be applied to cases of
non-Markovian dynamics, have not been formulated as yet. In order to survey the difficulties
that are encountered in extending the existing concepts, one should analyse the behaviour
of the von Neumann entropy for a quantum evolution of truly non-Markovian character.
Owing to its famous dynamics of collapse and revival [15], the Jaynes–Cummings model
[16, 17] offers such an evolution. A two-level atom constitutes the dissipative quantum
system, so the reduced density operator acts on a Hilbert space of finite dimension. For the
Jaynes–Cummings model, several studies of the von Neumann entropy and related quantities
have been published [18–23]. With one exception [24], the entropy has only been plotted
for initial atomic states that are pure.

The programme described above should also be carried out for a damped version of the
Jaynes–Cummings model. In doing so one has the opportunity to study the von Neumann
entropy for an evolution that includes both a quasireversible and a fully irreversible stage.
Our aim is perfectly feasible, because in a recent paper the Jaynes–Cummings model with
cavity damping has been solved exactly [25]. At zero temperature and in the absence of
atomic detuning, analytic expressions have been presented for all matrix elements of the full
density operator in number-state representation. A mathematical limit has been put forward
in which the atomic density matrix converges to the state of maximum entropy. The last
result represents an additional motivation to explore the dynamics of the damped case in
some detail. We wish to find out if, for physically relevant parameter choices, the atomic
entropy can indeed take on its maximum value during a longer time span. In fact, we shall
see that the state of maximum entropy may act as an attractor in atomic phase space. As
in the literature, this state will also be called the central state.

We give a short overview of our paper. In section 2 we develop all necessary analytical
tools for studying the von Neumann entropy. We also demonstrate that in the presence
of spontaneous emission and atomic detuning the Jaynes–Cummings model with cavity
damping can be solved by adopting the strategy of [25]. A measure for entropy variations
is constructed. It is evaluated analytically for a reference process of Markovian type. Plots
of the atomic inversion and von Neumann entropy are presented in section 3. We have
chosen to keep the number of plots to a minimum, so that each case can be discussed
carefully. Finally, in section 4 the main conclusions of this paper are summarized.

2. Solution of the model

Working within a fully quantum-mechanical context, we are going to examine the evolution
in time of a motionless two-level atom that, owing to the use of an optical resonator, interacts
with a single mode of the quantized electromagnetic (em) radiation field. The dynamical
behaviour of the composite system of atom (A) and field (F ) is described by the density
operatorρ(t), which acts on the Hilbert spaceHA⊗HF . The following Markovian master
equation is adopted [1]

dρ(t)

dt
= L1[ρ(t)] + κL2[ρ(t)] + γL3[ρ(t)] (1)
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where operatorsL1, L2, andL3 are defined as

L1[ρ] = −i[H, ρ] (2)

H = σ+ ⊗ a + σ− ⊗ a† +1(i+ ⊗ 1I− i− ⊗ 1I) (3)

L2[ρ] = 2(1I2⊗ a)ρ(1I2⊗ a†)− (1I2⊗ a†a)ρ − ρ(1I2⊗ a†a) (4)

L3[ρ] = 2(σ− ⊗ 1I)ρ(σ+ ⊗ 1I)− (i+ ⊗ 1I)ρ − ρ(i+ ⊗ 1I)

−0[(i+ ⊗ 1I)ρ(i− ⊗ 1I)+ (i− ⊗ 1I)ρ(i+ ⊗ 1I)]. (5)

The excited state and the ground state spanning the atomic Hilbert space have been
represented by the vectorŝe1 = (1, 0)T and ê2 = (0, 1)T , respectively. Each atomic
operator has been written as a linear combination of four matrices, given by

i+ =
(

1 0
0 0

)
i− =

(
0 0
0 1

)
σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
. (6)

The creation and annihilation operators belonging to the privileged cavity mode have been
denoted bya† anda, respectively.

The HamiltonianH models the interaction between the atom and field mode in the
absence of energy losses. The rotating-wave and electric-dipole approximations have been
employed. We have moved to the interaction picture and taken into account the fact that the
frequencyωA of the atomic transition may differ from the frequencyωF of the privileged
mode. As a consequence, expression (3) includes contributions that are proportional to the
detuning parameter1 = (ωA − ωF )/(2g), whereg stands for the coupling constant of the
Jaynes–Cummings HamiltonianH(1 = 0). Equation (1) has been divided byg so as to
make timet dimensionless, as well as parametersκ andγ . The latter determine the strength
of cavity damping and atomic damping, respectively. In specifying the associated operators
L2 andL3 we have assumed that the cavity does not contain any thermal photons.

On the basis of expression (5) the Bloch equations can be derived. The transverse and
longitudinal relaxation constants come out asγ⊥ = γ (1+ 0) and γ‖ = 2γ , respectively.
Thus master equation (1) preserves the trace, the self-adjointness, and the positivity of the
initial density operatorρ(t = 0) as long as parametersκ, γ , and0 do not become negative
[26]. The factorization

ρ(t = 0) = ρA ⊗ ρF (7)

will be employed throughout this paper. In order to find out how the initial atomic stateρA
evolves in time we have to evaluate the atomic density matrixρA(t), the entries of which
read

ρA(t)ij =
∞∑
n=0

〈êi ⊗ n|ρ(t)|êj ⊗ n〉 (8)

with i, j = 1, 2. In carrying out the partial trace over Hilbert spaceHF we have chosen
the photon-number states{|n〉}∞n=0 as an orthonormal basis.

2.1. Undamped case

If damping parametersκ andγ equal zero, equation (1) can be solved with the help of two
identities:

exp(iHt)|ê1⊗ n〉 = An(t)|ê1⊗ n〉 + Bn(t)|ê2⊗ (n+ 1)〉
exp(iHt)|ê2⊗ n〉 = A∗n−1(t)|ê2⊗ n〉 + Bn−1(t)|ê1⊗ (n− 1)〉. (9)
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We have abbreviated

An(t) = cos(�nt)+ i1�−1
n sin(�nt)

Bn(t) = i(n+ 1)1/2�−1
n sin(�nt)

(10)

and defined a Rabi frequency�n = (n+12+ 1)1/2. Note that functionB−1(t) is identical
to zero. In proving equations (9) one should exploit the fact that for each integern a simple
representation for operatorHn exists [27].

Upon substituting the relationρ(t) = exp(−iHt)(ρA⊗ρF ) exp(iHt) into (8) and making
use of identities (9), one arrives at the following result for the atomic density matrix

ρA(t)11 =
∞∑
n=0

[ρA,11ρF,n,nAn(t)A
∗
n(t)+ ρA,12ρF,n,n+1A

∗
n(t)Bn(t)

+ρ∗A,12ρF,n+1,nAn(t)B
∗
n(t)+ ρA,22ρF,n+1,n+1Bn(t)B

∗
n(t)]

ρA(t)12 =
∞∑
n=0

[ρA,12ρF,n,nA
∗
n−1(t)A

∗
n(t)+ ρA,11ρF,n+1,nA

∗
n+1(t)Bn(t)

−ρA,22ρF,n+1,nA
∗
n−1(t)Bn(t)− ρ∗A,12ρF,n+2,nBn(t)Bn+1(t)].

(11)

The two remaining elements can be obtained with the help of the relationsρA(t)22 =
1 − ρA(t)11 and ρA(t)21 = ρA(t)

∗
12, which follow from the constraints Trρ(t) = 1 and

ρ(t)† = ρ(t). The notation〈m|O|n〉 = Om,n has been introduced, whereO denotes a field
operator.

The undamped case has the drawback that it is difficult to make a mathematical statement
on the asymptotic behaviour of the atomic density matrix. On the other hand, if we take as
an initial condition for the fieldρF = |α〉〈α|, with |α〉 = exp(−|α|2/2+ αa†)|0〉 a coherent
state, then for large times and large coherence parameterα the trigonometric factors in (11)
merely give rise to oscillations of modest amplitude [28]. Accordingly, the atomic density
matrix never differs much from the time average

ρ̄A = lim
T→∞

1

T

∫ T

0
dt ρA(t). (12)

We recall that the asymptotic regime is preceded by the well known dynamics of collapse
and revival in the Rabi oscillations of matrix elements (11) [15].

In computing an off-diagonal of matrix (12) one does not meet integrands other than
exp(iat), with a real and nonzero. Hence, only the diagonals differ from zero. If the
coherence parameterα is chosen to be real and large, then the corresponding series can be
calculated analytically. We utilize Stirling’s representation of a factorial and subsequently
replace the summation by an integral. It is important to perform a cut-off at low photon
numbers because our integration interval should not contain any singular points [25].
Application of the saddle-point method then leads to

ρ̄A,11 = 1
2 + [(ρA,11− 1

2)1/α + ReρA,12](1/α)(1−12/α2)− ρA,221
2/(2α4)+O(α−5).

(13)

In the case in whichα2 > 25 and|1| 6 2, the above expansion matches the numerical
result for ρ̄A,11 very well; the absolute error is always less than 10−2. For zero detuning
the right-hand side of (13) equals12, whereas an exact computation yieldsρ̄A,11 − 1

2 =
(ρA,11/2− 1

2) exp(−α2). The latter result practically equals zero forα large.



Entropy studies for the Jaynes–Cummings model 3399

2.2. Damped case

We decompose the density operator for the atom and field according to

ρ(t) = i+ ⊗ ρ1(t)+ σ− ⊗ ρ2(t)+ σ+ ⊗ ρ3(t)+ i− ⊗ ρ4(t) (14)

and evaluate, on the basis of master equation (1), the time derivatives of all matrix elements
of the field operators{ρj (t)}, opting for a number-state representation. From the ensuing
equations of motion the following system can be extracted

d

dt
v(t;m, n) = A(m, n)v(t;m, n)+ 2κS(m, n)v(t;m+ 1, n+ 1) (15)

where integersm andn run from zero to infinity.
The new vector is given by

v(t;m, n) = [ρ1(t)m,n, ρ2(t)m+1,n, ρ3(t)m,n+1, ρ4(t)m+1,n+1]T . (16)

Matrix A can be found via the prescriptions

A(m, n)kl = A(m, n)lk
A(m, n)11 = −κ(m+ n)− 2γ

A(m, n)22 = A(m, n)∗33 = −κ(m+ n+ 1)− γ (1+ 0)+ 2i1

A(m, n)44 = −κ(m+ n+ 2)

A(m, n)12 = A(m, n)34 = −i(m+ 1)1/2

A(m, n)13 = A(m, n)24 = i(n+ 1)1/2

A(m, n)14 = A(m, n)23 = 0.

(17)

For the second matrix in (15) one has

S(m, n)11 = (m+ 1)1/2(n+ 1)1/2

S(m, n)22 = (m+ 2)1/2(n+ 1)1/2

S(m, n)33 = (m+ 1)1/2(n+ 2)1/2

S(m, n)44 = (m+ 2)1/2(n+ 2)1/2

S(m, n)41 = γ /κ.

(18)

All other elements of matrixS(m, n) are equal to zero.
Evaluation of the atomic density matrix by means of equation (8) requires that the

solutions for vectorv(t;m, n) and matrix elementρ3(t)0,0 be available. Therefore we need
to supplement set (15) with two more equations of motion, given by(

d/dt + γ (1+ 0)+ 2i1 i
i d/dt + κ

)(
ρ3(t)0,0
ρ4(t)1,0

)
=
(

2κv(t; 1, 0)3
2γv(t; 1, 0)1+ 23/2κv(t; 1, 0)4

)
. (19)

In [25] it has been demonstrated that the ordinary first-order differential equations (15)
and (19) can be solved by means of Laplace transformation and iteration. For the case of
γ = 1 = 0 explicit expressions for all matrix elementsρj (t)m,n have been obtained. The
density operatorρ(t) has been shown to converge to the state of lowest energyi− ⊗ |0〉〈0|,
as timet tends to infinity.
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2.3. Entropy

Knowledge of density matrixρA(t) gives us access to the von Neumann entropy [3, 6] of
the atom. It is defined as

SA(t) = S[ρA(t)] S[ρ] = −kB Tr{ρ ln ρ} (20)

where kB denotes Boltzmann’s constant, andρ any density operator. The non-negative
functional S[ρ] satisfies a uniqueness theorem. It can be constructed by proposing a set
of properties that must be satisfied by any quantum entropy [4]. With the help of the
von Neumann entropy one can make fundamental connections between quantum mechanics
and statistical physics. First, for a large quantum system in thermodynamic equilibrium
the complete formalism of statistical mechanics can be set up by applying a principle of
maximum entropy to (20) [5].

Second, for a small dissipative quantum systemS, for example, a system with a Hilbert
space of finite dimension, the von Neumann entropy can be employed to formulate a
quantum-mechanical counterpart of the second law of thermodynamics [9]. Let us discuss
this point in detail. Describing the time evolution ofS by a density matrixρS(t), we assume
that the relationρS(t) = 3(t)ρS(t = 0) is valid, where the (super-)operators{3(t)|t > 0}
form a quantum-dynamical semigroup [14]. One possibility to realize such a Markovian
time evolution consists of couplingS to a large reservoir, and subsequently taking the
weak-coupling limit [13].

If no work is carried out, the quantum formulation of the second law reads

σ(t) = d

dt
(S[ρS(t)] − T −1 Tr{ρS(t)HS}) (21)

whereHS denotes the Hamiltonian ofS, andT the temperature of the reservoir. Quantity
σ(t), which is commonly called the entropy production, should be non-negative for all times.
In the case in whichρS(t) converges for large times to the Gibbs stateZ−1 exp[−HS/(kBT )],
with Z = Tr{exp[−HS/(kBT )]}, (21) can be written as [11]

σ(t) = −kB d

dt
R[3(t)ρS(0),3(∞)ρS(0)]. (22)

We have introduced the relative entropy

R[ρ1, ρ2] = Tr{ρ1(ln ρ1− ln ρ2)} (23)

with ρ1 and ρ2 arbitrary density operators. One can prove [29] that for all completely
positive quantum-dynamical semigroups{3(t)|t > 0}, with 3(∞)ρS(0) a well-defined
operator, the right-hand side of (22) is indeed non-negative. Thus the last identity constitutes
a quantum version of the second law of thermodynamics. Observe that matrixρ1 ln ρ2

becomes divergent ifρ2 approaches a pure state.
For quantum dissipative processes, which must be described on the basis of a non-

Markovian master equation, it is impossible to formulate a principle that is directly analogous
to the second law of thermodynamics. To map all the difficulties one may encounter in
tackling this problem, we should examine the behaviour of the von Neumann entropy for
one specific quantum system, the dynamical behaviour of which is of a truly non-Markovian
nature. Because of the collapses and revivals in its Rabi oscillations [15], the atomic density
matrix ρA(t) of the Jaynes–Cummings model seems to be an ideal candidate.

The above choice has a further advantage. For large times and nonzero damping
parameterκ or γ , the density matrix exponentially decays to the state of lowest energy, so
that the entropy converges to zero. We shall therefore be in a position to study a crossover
between non-Markovian and Markovian dynamics. As pointed out earlier, for the undamped



Entropy studies for the Jaynes–Cummings model 3401

case convergence does not take place. However, if the field starts from a coherent state
with a large coherence parameter, then the atom eventually stays in the vicinity of the
central state1

21I2, as follows from (13). Consequently, variations of entropySA(t)/kB will
be confined to a small interval that lies directly below the maximum entropy value of ln 2.

As we shall see in section 3, the atomic entropySA(t) is a continuous function of time
that may fluctuate a lot. If we were to characterize its behaviour in detail, for instance by
specifying all of its extrema, then we would be confronted with a huge amount of data, and
hence lose the overview. What we shall do is select a number of time intervals [t1, t2] of
equal length, and find out for each of these how strong fluctuations are. This task can be
carried out by evaluating a quantity called the maximal variation of a function. It is defined
as

ψ(t1, t2) =
∫ t2

t1

dt

[
dSA(t)

dt

]2

. (24)

For a closed quantum system the time evolution of the density operator is determined by
unitary transformations, so the von Neumann entropy remains constant. In other words,
any change inSA(t) must be ascribed to interaction between the two-level atom and its
surroundings. The quantityψ(t1, t2) can be regarded as a measure for the influence that
the field mode and the Markovian reservoirs exert on the two-level atom during the time
interval [t1, t2].

In discussing the behaviour of measureψ , it is instructive to make a comparison with
values that belong to a reference process. The latter should obey the requirements underlying
the positivity of entropy production (22). We consider Markovian dynamics in the diagonals
of the density matrixξ(t) for a two-level atom. The off-diagonal elements are kept equal
to zero so as to allow for an analytical evaluation of (24). We start from the identities

ξ(t)11 = ξ(∞)11+ [ξ(0)11− ξ(∞)11] exp(−γ‖t) (25)

and ξ(t)22 = 1 − ξ(t)11, where parametersξ(0)11 and ξ(∞)11 must be elements of the
interval [0, 1]. By choosingξ(0)11 = 1, ξ(∞)11 = 0, one describes spontaneous emission
of a photon. The lifetime of the excited atomic level is given byγ−1

‖ .
Since matrixξ(∞) is diagonal, the relative entropyR[ξ(t), ξ(∞)] can be calculated

without any problems. Now the form (22) comes out as

σ(t) = kBγ‖ exp[−γ‖t ][ξ(0)11− ξ(∞)11] ln

[
ξ(t)11

1− ξ(t)11

1− ξ(∞)11

ξ(∞)11

]
. (26)

Functionx/(1− x) monotonically increases on the interval 06 x < 1, so for our reference
process the entropy production is indeed positive. As anticipated above, it diverges if we
start from, or end up, in a pure state.

Upon departing from (25) and performing an integral transformation we obtain for
measure (24)

ψ(t1, t2) = 1
4k

2
Bγ‖{[1− 2ξ(∞)11]I1(u1, u2)+ I2(u1, u2)}

ui = 2ξ(∞)11− 1+ 2[ξ(0)11− ξ(∞)11] exp(−γ‖ti)
(27)

with i = 1, 2. Two integrals must be computed, namely

I1(u1, u2) =
∫ u1

u2

dx ln2

(
1+ x
1− x

)
I2(u1, u2) =

∫ u1

u2

dx x ln2

(
1+ x
1− x

)
.

(28)
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Boundariesu1 andu2 lie inside interval [−1, 1]. Both I1 andI2 can be calculated via partial
integration. In the case ofI1 one encounters integral 2.728.1 of [30]. For the process of
spontaneous emission the resultψ(0,∞) = π2k2

Bγ‖/6 is found.

3. Dynamics of the two-level atom

On the basis of the analytical solutions presented in the previous section and in [25],
we shall examine the evolution in time of the atomic inversion, defined asd(t) =
[ρA(t)11 − ρA(t)22]/2, and the scaled von Neumann entropySA(t)/kB . It should be
emphasized that in computing all infinite series for the atomic density matrixρA(t), we
have invoked mathematically sound truncation criteria. For the damped case these have
been derived in [25]. In computing the measureψ , defined in (24), differentiations and
subsequent integrations have been performed numerically. To ensure an excellent accuracy
the behaviour of each functionSA(t) has been determined with great precision. For regions
exhibiting strong fluctuations a resolution of 103 points per unit of time has been employed.

For all of our plots the initial conditionρ(0) = ρA ⊗ |α〉〈α| has been chosen, with
coherence parameterα real. Its square is equal to the mean photon number. We recall that
time t has been scaled; one unit of time is given by the inverse of the coupling constantg.

3.1. Undamped case

In figures 1 and 2 functionsd(t) andSA(t)/kB have been plotted for the choiceρA = i+,
α = 5, andγ = κ = 1 = 0. On the interval 06 t 6 2 the Rabi oscillations in the inversion
almost collapse, while on the interval 206 t 6 80 one encounters two well-separated
revivals. The amplitude of the Rabi oscillations attains a maximum at the so-called revival
times Tn, which are found as [15]Tn = 2nπ(α2 + 12)1/2, with n an integer. For times
larger than 100 the inversion fluctuates in an irregular manner about its average valued̄ of
zero. As observed above, convergence does not take place.

The first collapse for the inversion is accompanied by a sharp increase in entropy. One
checks that at timet = 2 the initial pure statei+ has practically evolved to the central state
1
21I2. On the interval 26 t 6 100 the entropy displays a very marked behaviour. The
small-scale fluctuations can be ascribed to Rabi oscillations in all elements of the atomic
density matrix. In contrast, the sequence of low minima att ≈ 18, 47, and 80 relates
to dynamics in the off-diagonalρA(t)12. This matrix element governs the evolution of
the induced electric-dipole moment. If it were equal to zero, then the entropy would not
differ much from ln 2 during a collapse. For large times the entropy plot of figure 2 has a
completely irregular character. As anticipated above, the average value of the entropy lies
close to ln 2.

In the appendix we compute the atomic density matrix for large coherence parameter
and γ, κ,1 equal to zero. As in [28], the off-diagonal matrix elementρA(t)12 is found
to perform oscillations at both a high frequency of orderα and a low frequency of order
α−1. The former oscillations are of the Rabi type, and give rise to the same kind of revival
dynamics that is observed in the atomic inversion. The oscillations of low frequency bring
about a very slow dynamical evolution, which also exhibits collapses and revivals. The first
collapse lasts from timet = 0 until t ≈ 4

√
2α2; it is this collapse of slow oscillations in

matrix elementρA(t)12 that underlies the large-scale oscillations in entropy, as displayed in
figure 2 for 26 t 6 100.

The amplitude of Rabi oscillations depends a lot on the initial atomic density matrix.
If we choose as matrixρA the mixed state1

21I2 in drawing figure 1, then the inversion
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Figure 1. Time evolution of atomic inversion forρA = i+,
α = 5, andγ = κ = 1 = 0.

Figure 2. Time evolution of von Neumann entropy.
All parameters as in figure 1.

almost remains zero. Its evolution has been monitored up to times of order 106. Hence,
the atom remembers very well from which state it has started. Such memory effects are
typical for non-Markovian processes [2]. The choice of matrixρA also has a big influence
on the entropy, especially as the first collapse of Rabi oscillations takes place. To illustrate



3404 F Farhadmotamed et al

Figure 3. Time evolution of atomic inversion and
von Neumann entropy fort 6 100,ρA = i+, α = 5,
1 = 3, andγ = κ = 0.

this statement we have computed measure (24) forρA varying betweeni+ and 1
21I2, with

ρA,12 and t1 zero, t2 = T1/5, and all other parameters as in figure 1. We have found that
ψ/k2

B monotonically decreases from 0.66 for the pure state to 0.01 for the central state. The
decrease can be explained by observing that, apart from a few exceptions [22, 31], all initial
atomic states evolve during the first collapse to the central state via a simple trajectory in
phase space.

For nonzero detuning parameter, memory effects in the evolution of the two-level atom
become still more pronounced. Now, not only the amplitude of Rabi oscillations, but also
the time average of the inversion is affected by variations in the initial atomic state. In
figure 3 we have increased1 to 3, and taken all other parameters as in figure 1. One
observes that the inversion oscillates about the value of 0.13 instead of zero. This shift can
be perfectly understood on the basis of expansion (13), from which the resultd̄ = 0.115 is
found. For the entropy the characteristic sequence of minima is there again. As compared
with the case1 = 0, the locations of the minima have moved to the right, and the first
minimum is less deep [21]. Furthermore, for times smaller than 100 the entropy no longer
exceeds the value of 0.6; for large times of order 104 the entropy fluctuates in the same
irregular manner as in figure 2, and stays on average well above the value of 0.6.

As discussed in the previous section, it is useful to gain quantitative information on
fluctuations in the atomic entropy. The programme described near (24) has been carried
out for several parameter sets, including those covered by figures 2 and 3(b). A natural
choice for the intervals [t1, t2] is provided by the revival timesTn = nT1, with n an integer.
Starting at timeT1/2, we divide the time axis into successive intervals of fixed duration
T1. The quantityψn ≡ ψ [(n − 1

2)T1, (n + 1
2)T1] then delivers us the maximal variation

of entropy during intervalIn containing thenth revival. Of course, integern need not be
limited by the number of revivals that really take place. Results for measureψn have been
collected in table 1.



Entropy studies for the Jaynes–Cummings model 3405

Table 1. Values of measureψn/k2
B for four choices ofα and1. Damping parametersγ andκ

are equal to zero, and for the initial atomic state the choiceρA = i+ has been made.

n α = 5 α = 10 α = 5 α = 10
1 = 0 1 = 0 1 = 3 1 = 3

1 5.2 5.3 3.5 4.7
2 13.0 17.9 7.7 15.4
3 13.4 35.2 7.4 30.3
4 9.6 50.4 13.6 43.1
5 7.6 56.5 13.4 47.1
6 6.2 52.8 11.0 47.3
7 5.4 44.3 8.9 45.9

The most striking fact about our data is thatψn does not behave monotonically as a
function of n, but goes through a maximum. It is not true that the atom experiences the
strongest influence from the field mode during the first revival of Rabi oscillations in the
inversion. Indeed, for the two revivals, which are displayed in figure 1(b) and contained
in the intervalsI1 = [15.7, 47.1] and I2 = [47.1, 78.5], our measure of maximal variation
increases by more than a factor of 2. For intervalI3, which no longer contains a clean
revival, the measure attains its maximum. If1 is put equal to 3, the value of the maximum
remains approximately the same, but both the increase and decrease ofψn is spread out over
more intervalsIn. This confirms the intuitive statement that in the presence of detuning the
dynamic interplay between the atom and field does not change in character, but proceeds at
a slower pace.

The trends described above persist if we augment the mean photon number, so that a
plot of the inversion exhibits more revivals. Forα = 10 they are seven in number. From the
third column of table 1 one sees that relative differences inψn have become much larger.
The maximum value ofψn now exceedsψ1 by more than a factor of 10. Furthermore, the
position of the maximum has shifted to intervalI5 = [282.7, 345.6]. Inside this interval
fluctuations in entropy are larger than before, because forα = 10 the ratio(ψn)max/(T1k

2
B)

amounts to 0.90 instead of 0.43 forα = 5. The foregoing data demonstrate in a quantitative
manner that for higher coherence parameterα the dynamic interplay between the atom and
field becomes more intense and takes up more revival timesT1. The second statement can
be corroborated by investigating at which instant the atomic entropy enters its asymptotic
regime of irregular fluctuation in a strip below ln 2. Choosing1 = 0, we find that for
α = 5, measureψn/k2

B stays close to the value of 5 fromn = 10 onwards. Forα = 10
the last two figures must be replaced by 10 andn = 20, respectively. Note that timeT1 is
proportional toα, so the asymptotic value for ratioψn/(T1k

2
B) does not depend much on

the coherence parameter.
The non-monotonic behaviour of measureψn as a function ofn is a further sign for the

fact that the Jaynes–Cummings model gives rise to a non-Markovian time evolution. To
make this remark more explicit we evaluate measureψn for a Markovian counterpart of the
time evolution shown in figure 2. We make in (25) the choicesξ(0)11 = 1 andξ(∞)11 = 1

2,
and divide the time axis into intervals of lengthγ−1

‖ /10. From (27) we infer that measure

ψn ≡ ψ [nγ−1
‖ /10, (n+1)γ−1

‖ /10] now monotonically decreases as a function ofn, with n a

non-negative integer. The same conclusion is reached if intervals of lengthγ−1
‖ /100 orγ−1

‖
are used. The last option, however, is rather uninteresting, because the intervalt > γ−1

‖
makes a contribution of less than 0.005 to the total measureψ(0,∞)/(γ‖k2

B) = ln 2.
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The initial density operatorρ(0) belonging to table 1 corresponds to a pure state. Hence,
the total von Neumann entropyS(t) = −kB Tr{ρ(t) ln ρ(t)} vanishes at all times. By the
fundamental inequality|SA(t)−SF (t)| 6 S(t) [32], this implies the equalitySA(t) = SF (t),
so all conclusions ensuing from table 1 also hold true for the entropySF (t) of the field
mode [33]. A last important remark pertaining to table 1 concerns the order of magnitude
of measureψn. Its dependence on the choice of initial state is quite strong. Taking1

equal to zero and intervalsIn as before, we compute on the basis of (11) measureψn for
the initial conditionsρ(0) = 1

21I2 ⊗ |α〉〈α| andρ(0) = i+ ⊗ |m〉〈m|, where|m〉 denotes a
photon-number state. To allow for a comparison with values from table 1 parameterα is
set equal to 5 and integerm equal to 25. For the first caseψn/k2

B is smaller than 0.21 for
all n, whereas for the second caseψn/k2

B is constant and equal to 382.

3.2. Damped case

In the remainder of this section the damping parameterκ is chosen to be finite. The optical
cavity thus becomes lossy. Detuning parameter1 and damping parameterγ are kept equal
to zero; as before, the atom is in perfect resonance with the privileged em mode and does
not emit photons into other modes. If one allows for cavity damping the evolution of the
atomic density matrix undergoes radical changes. This can already be seen from the fact
that now the following two limits are valid

lim ′
κ→0

ρA(t) = 1
21I2 (29)

lim
t→∞ ρA(t) = i−. (30)

Detailed proofs can be found in [25]. For limit (29) the field may start from either a coherent
or a photon-number state. The prime indicates that the time, the square of the initial em
energy density, and parameterκ−1 should be taken to infinity in such a manner that all of the
ratios between these quantities remain constant and nonzero. The above results demonstrate
that in the presence of cavity damping both the state of minimum energy and the state of
maximum entropy may act as attractors in phase space.

To visualize the influence of cavity damping in an effective manner we setκ equal to the
modest value of 0.001, and redo all of figures 1 and 2. The outcome is presented in figures 4
and 5. One can distinguish between four stages of evolution, each of which has been pictured
separately. During the first stage differences with the undamped case are negligibly small.
Again the Rabi oscillations of the inversion collapse, while the entropy grows from zero
to its maximum value of ln 2. During the second stage the entropy performs a series
of relatively smooth oscillations with decreasing amplitude, thereby attaining the afore-
mentioned maximum value at regular intervals. The dynamics of stage two is completely
dominated by the collapse belonging to the slow revival dynamics in the off-diagonal
ρA(t)12. For the undamped case this collapse has been discussed above.

The first and second entropy minima of stage two have barely shifted as compared
with figure 2(b), so the introduction of a modest cavity damping does not affect the large-
scale oscillations in entropy. The contrary is true for the Rabi oscillations. The plot of
the inversion for 26 t 6 100 shows that the amplitude of the first revival has shrunk
considerably, whereas the second revival has practically vanished. Making use of the
analytical results derived in section 5 of [25], one predicts that forα large all oscillations
in the atomic density matrix are damped by a factor of exp{−α2[1− exp(−2κt)]}, at least
if product κα3 is small. For the first and the second revivals of figure 4(b) one hast ≈ 31
and t ≈ 63, leading to damping factors of 0.22 and 0.05, respectively. With regard to
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Figure 4. Time evolution of atomic inversion for
ρA = i+, α = 5, κ = 0.001, andγ = 1 = 0.

the large-scale oscillations, it is manifest that forκ = 0.001 andα = 5 their behaviour
does not match the predictions of the weak-damping regime. In the case in whichκ equals
0.0001 the entropy plot exhibits both Rabi and large-scale oscillations. The damping factor
amounts to 0.86 for the first revival time. Hence, if productκα3 is of order 0.01, withα
large, the weak-damping regime seems to produce reliable predictions.
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Figure 5. Time evolution of von Neumann entropy. All
parameters as in figure 4.

During the third and fourth stages of the atomic evolution limits (29) and (30) come
into play, respectively. Accordingly, a plot from figures 4 and 5 no longer resembles its
counterpart of figures 1 and 2. For stage three the large-scale oscillations in entropy have
given way to a plateau. On the interval 2316 t 6 1270 the difference [ln 2− SA(t)/kB ] is
smaller than 10−3, so the atom stays in the central state1

21I2 for a long time. One checks
that parametersκ, κα4, and κt meet the conditions accompanying limit (29) reasonably
well, so indeed this limit underlies stage three. The fourth and last stage shows us a smooth
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decay of the central state to the ground statei−, as imposed by limit (30). As for the third
stage, matrix elementρA(t)12 remains close to zero throughout. Fort > 10 290 the entropy
is smaller than 10−3.

The dynamical behaviour displayed in figure 5 is representative for a large part of the
parameter space spanned byρA, α, andκ. We have checked that the four different stages
of evolution can be spotted for 106 α2 6 25 and 0.00016 κ 6 0.01; their existence
does not depend on the initial atomic state. If we vary matrixρA, still choosingα = 5 and
κ = 0.001, then only quantitative changes in the atomic evolution occur. For the first two
stages modifications are largely identical to those observed for the undamped case. Again
the amplitude of the Rabi oscillations becomes small asρA approaches the central state.
With regard to stage three, the length and location of the plateau of maximum entropy
may change somewhat. ForρA,11 = 0.6 andρA,12 = 0.1+ i0.2 it runs from t = 177 to
t = 1261. The exponential decay of stage four hardly depends on the initial atomic state.
For the last-mentioned choice the entropy dives below the value of 10−3 at t = 10 280
instead oft = 10 290 for the initial conditionρA = i+.

By augmenting damping parameterκ we bring about qualitative changes in the atomic
evolution. Figure 6 contains an entropy plot forα = 5 andκ = 0.01. The atom is in
the central state initially. This explains why, up to timet = 2, the entropy does not differ

Figure 6. Time evolution of von Neumann entropy forρA = 1
21I2, α = 5, κ = 0.01, and

γ = 1 = 0.
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much from ln 2, exactly as for the undamped case. Stage two can also be easily identified.
The increase inκ has compressed its dynamics. The third minimum has moved from time
t ≈ 75 for figure 5(b) to time t ≈ 57. For stage three the difference from figure 5(c) is
huge. Asκ is increased from 0.001 onwards, the plateau of maximum entropy becomes
shorter and shorter, until atκ = 0.01 it has almost ceased to exist. Only on the interval
1116 t 6 124 the inequality ln 2− SA(t)/kB < 10−3 is satisfied.

Since a small part of the third stage is still there, the smooth decay of the fourth stage
does not come as a surprise. Here a compression of the dynamics has taken place, which
is entirely due to the increase in damping. Measuring the time in units ofκ−1, we find
that for both figures 5 and 6 the entropy needs a time of 9.0 units to reach the value of
10−3. For our Markovian reference process a decrease in entropy from ln 2 to 10−3 is
found to take up an interval of duration 8.5γ−1

‖ . We have made the choiceξ(0)11 = 1
2

andξ(∞)11 = 0. Finally, the plots of the inversion, corresponding to figure 6, are omitted
because this function evolves in a very simple manner. The value ofd(t) lies in the close
vicinity of zero up to timet = 83, and subsequently decays to− 1

2.
From the findings of figures 5 and 6 one can learn something about the evolution of

small dissipative quantum systems. We recall that forα2 sufficiently large the two-level
atom undergoes an evolution of collapse and revival of Rabi oscillations, which possesses
a strongly non-Markovian character and may be called quasireversible [15]. A substantial
part of this evolution takes place on the intervalt < 4

√
2α2; as discussed in the appendix,

the bound is given by the collapse time belonging to the slow revival dynamics at zero
damping parameter. For times of orderκ−1 the Markovian damping term (4) becomes
important, and the atom undergoes an irreversible decay to the ground state. In the case
in which inequality 4

√
2α2� κ−1 is satisfied, the two afore-mentioned timescales are well

separated, so that one can study a crossover between two different kinds of dynamics. This
is precisely what has been done in figure 5. Product 4

√
2κα2 takes on the value of 0.14 in

that case.
Analysis of our plots and numerical data brings us to the following statement on

dissipative behaviour of small quantum systems at zero temperature: during a transition
from non-Markovian to Markovian evolution the state of maximum entropy may act as
an attractor in phase space, rather than the state of minimum energy. Inside the phase
space, which belongs to the two-level atom of the Jaynes–Cummings model, all trajectories
converge at the central state. Subsequently, they follow a unique path to the ground state,
given by 1

2(1I2 + λi− − λi+), with 06 λ 6 1. We emphasize that one may not look upon
the central state as being an attractor in phase space for all times smaller thanκ−1; the
trajectory corresponding to figure 6 starts at the central state, and passes through an almost
pure state already at timet ≈ 15. We should also mention that the remarkable role of the
central state does not depend on the choice of initial condition for the field mode. If we
replace in the parameter set of figure 5 the coherent state by a number state with 25 photons,
then hardly anything happens to stages three and four. The plateau of maximum entropy
now runs fromt = 54 to t = 1293, and during its exponential decay the entropy reaches
the value of 10−3 at t = 10 286.

Once more we point out that the above-described crossover does not take place for all
parameter choices. Ifα2 lies between 10 and 25, andκ exceeds the value of 0.1, then
one observes in the atomic entropy an abrupt change from oscillatory behaviour to smooth
decay. Ifα becomes of order unity, then oscillations in entropy may persist throughout the
whole atomic evolution. In all of these cases the ground statei− acts as an attractor in
phase space. The central state no longer possesses a special status.

Figure 7 provides a good illustration of the foregoing remarks. We have investigated
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Figure 7. Asymptotic time evolution of von Neumann entropy forρA = i+, α = 1, κ = 0.01,
andγ = 1 = 0.

the evolution of the entropy forα = 1 andκ = 0.01; the atom starts from the excited
state. For small times the entropy fluctuates in an irregular manner, thereby staying above
the value of 0.5 on the interval 206 t 6 80. As t becomes larger than 100 dissipation
forces the entropy to converge to zero. However, instead of being monotonic the character
of the decay is now oscillatory. One thus can say that for all times the dynamics is of a
non-Markovian type. This assertion is confirmed by looking at the influence of the initial
density matrix. Replacement ofρA = i+ by ρA = 1

21I2 does not affect the rate at which
SA(t) decreases, but does suppress all oscillations of figure 7. Quantitatively speaking, we
find that measureψ(200, 700)/k2

B decreases from 0.49 forρA = i+ to the small value of
0.006 forρA = 1

21I2; these figures differ by a factor of about 80.
We conclude this section with a brief study of the dependence of measureψ on cavity

damping. We have evaluated the formsψ(0, Td) and ψ(Td,∞) for ρA = i+, α = 5,
γ = 1 = 0, andκ running from 0.001 to 1; for this choice of parameters the evolution
of the entropy can be divided into a non-Markovian segment of oscillatory character and a
Markovian segment of monotonic character. We callTd the time at which the Markovian
decay sets in. From a comparison between tables 1 and 2 one sees that even a modest
cavity damping ofκ = 0.001 causes a major decrease in entropy fluctuations. The value
of measureψ(0, Td)/k2

B is more than 10 times smaller than the variation of entropy found
for the second revival of Rabi oscillations at zero damping. Asκ runs through the interval
[0.001, 1] measureψ(0, Td)/k2

B shrinks by a factor of 2 only, so for moderate to strong
damping its dependence onκ may be called weak. In contrast, measureψ(Td,∞) increases
linearly with the strength of cavity damping, ifκ varies between 0.001 and 0.1. Such a
behaviour does not puzzle us, in view of the fact that for our Markovian reference caseψ

has been found to be proportional to damping parameterγ‖. Altogether, measureψ turns
out to be an excellent tool for discriminating Markovian processes from non-Markovian
ones.
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Table 2. Values of measureψ/k2
B for the non-Markovian and the Markovian parts of the atomic

evolution. These correspond to the intervals 06 t 6 Td andTd 6 t 6 ∞, respectively. The
atom starts from statei+; the other parameters are given byα = 5 andγ = 1 = 0.

κ Td ψ(0, Td )/k2
B ψ(Td ,∞)/k2

B

10−3 1.05× 103 1.02 1.1× 10−4

10−2 1.23× 102 0.77 1.1× 10−3

10−1 2.03× 10 0.74 1.1× 10−2

1 1.44 0.48 1.9× 10−1

4. Conclusion

Density matrixρA(t) as determined by master equation (1) represents an attractive model
for studying the dynamics of small dissipative quantum systems. On the one hand the model
can be solved exactly, and on the other hand it offers us a time evolution of a surprisingly
high complexity. In the case in which the damping parameterκ equals zero the composite
system of a two-level atom and privileged field mode undergoes a unitary time evolution. If
the field is in a coherent state|α〉 initially, the evolution of the two-level atom is governed
by collapses and revivals of both slow and fast oscillations. The atom and field never stop
exchanging energy, so convergence to a final state does not take place.

The picture becomes different as soon as we couple the field mode to a Markovian
reservoir by choosingκ to be finite. Now the revival dynamics gives way to a regime of
decay after a time of orderκ−1, so for all choices of parameters the atom ends up in its
ground state. Under certain circumstances, for instance, if inequalities 106 α2 6 25 and
0.00016 κ 6 0.01 are satisfied, the last part of each trajectory in atomic phase space is
unique. All trajectories converge at the central state1

21I2; from there they follow the same
path to the atomic ground state as for the process of spontaneous emission. Thus, not the
ground state but rather the state of maximum entropy acts as the principal attractor in phase
space.

We have put considerable effort in exploring the behaviour of quantitySA(t) =
−kB Tr{ρA(t) ln ρA(t)}, the von Neumann entropy of the atom. Two aims have been
achieved. First, we have demonstrated that functionSA(t) is very well suited for
characterizing the nature and strength of the interaction between the atom and field mode
in a quantitative manner. This task has been carried out by measuring variations in entropy
with the help of quantityψ , defined in (24). It tells us to what extent the atom feels the
presence of the field mode and Markovian reservoir during a certain time span.

It appears that for the undamped Jaynes–Cummings model measureψ evolves in a
nonmonotonic fashion. Forα equal to 5 and 10 fluctuations in entropy are strongest not
during the first but during the third and fifth revivals of the Rabi oscillations, respectively.
Furthermore, the magnitude ofψ may depend a lot on the initial atomic state. In the damped
case huge variations can be recorded even for times of orderκ−1. Such memory effects are
nonexistent for Markovian processes. In other words, measureψ may serve as an indicator
for non-Markovian dynamics. We recall that for the process of spontaneous emission the
form ψ has been evaluated analytically, so a solid Markovian reference case is available.

With our entropy studies we have also achieved something else. One may ask
the fundamental question whether there exists a quantum counterpart of the second law
of thermodynamics, valid for any irreversible quantum process. The damped Jaynes–
Cummings model unites irreversibility with exemplary non-Markovian dynamics. Therefore,
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the findings presented in section 3 permit us to assess the difficulties that must be overcome
in extending formula (22) for entropy production. We have seen that the evolution of the
entropy can be oscillatory, with two different timescales involved. As a consequence, for
the dynamics of section 3 the time derivative in (22) will change its sign very frequently.
We have to decide whether an extended formula for entropy production is to yield a positive
result for all times.

A further difficulty to be faced concerns invariant states. The derivation of (22) rests
on the assumption that only one such state exists. Obviously, our entropy plots as well
as limits (29) and (30) undermine this assumption. What one could do as a first step
toward an improved understanding of entropy production, is investigate the behaviour of
formula (22) and related proposals [34] for an evolution that is a simplified version of the
dynamics encountered in section 3. This might give us some clues as to how rigorous
results on entropy production should look like outside the framework of semigroup-induced
time evolution.
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Appendix. The atomic density matrix for large coherence parameter

Assuming that the field is in a coherent state|α〉 at time zero, we evaluate the atomic
density matrix for real and large coherence parameterα. The saddle-point method will be
employed. We consider the undamped case, and set the detuning parameter equal to zero.
In contrast to series (11), the results of this appendix can be easily interpreted. They enable
the reader to develop a thorough understanding of how the dynamics of collapse and revival
works. A similar treatment of (11) can be found in [35].

Use of Stirling’s expansion paves the way for replacing in (11) all summations by
integrations. This yields integrals of the following type

∫ ∞
ε

dx hi(x) exp[−α2gi(x)] (A1)

with i = 1, 2. Cut-off parameterε ensures that the integrand is finite over the complete
integration interval. One proves [25] that all summations in (11) decay exponentially fast
for largeα if the summation indexn is kept smaller than [εα2], and ε is sufficiently close
to zero.

In leading order ofα one finds

g1(x) = x ln x − x + 2itα−1x1/2

g2(x) = x ln x − x − itα−3x−1/2/2.
(A2)

Since the function lnz is multivalued for complexz, there exist infinitely many saddle points
z = u(t) at each fixed time. One easily recognizes that not the timet but rather the phase
argu(t) is the natural parameter if it comes to specifying the results for integrals (A1).



3414 F Farhadmotamed et al

For largeα the atomic density matrix comes out as

ρA(t)11 = 1
2 + Re

∞∑
k=0

(−1)k+1A1[(−1)k+1φk] exp[−α201(φk)− i(−1)kα2�1(φk)]

ρA(t)12 = iIm
∞∑
k=0

(−1)kA2[(−1)k+1φk] exp[−α201(φk)− i(−1)kα2�1(φk)]

+iIm
∞∑
k=0

(−1)kA3[(−1)k+1χk] exp[−α202(χk)− i(−1)kα2�2(χk)]

+Re
∞∑
k=0

(−1)kA4[(−1)k+1χk] exp[−α202(χk)− i(−1)kα2�2(χk)].

(A3)

Damping parameters{0i}, frequencies{�i}, and amplitudes{Ai} are given by

01(x) = 1− exp[2x tanx][cos(2x)− 2x tanx]

02(x) = 1− exp[2
3x tanx][cos( 2

3x)− 2x sin( 1
3x) cos−1(x)]

�1(x) = exp[2x tanx][sin(2x)+ 2x]

�2(x) = exp[2
3x tanx][sin( 2

3x)− 2x cos( 1
3x) cos−1(x)]

A1(x) = 1

2
[(1+ x tanx)2+ x2]−1/4 exp

[
− i

2
arg(1+ x tanx + ix)

]
×{−ρA,11+ exp[−2x tanx − 2ix]ρA,22+ 2i exp[−x tanx − ix]Im ρA,12}

A2(x) = 1

2
[(1+ x tanx)2+ x2]−1/4 exp

[
−x tanx − ix − i

2
arg(1+ x tanx + ix)

]
×{−ρA,11+ exp[−2x tanx − 2ix]ρA,22+ 2i exp[−x tanx − ix]Im ρA,12}

A3(x) = 1

2
[(1+ x tanx)2+ x2]−1/4 exp

[
−1

3
x tanx − i

3
x − i

2
arg(1+ x tanx + ix)

]
×
{
−ρA,11− exp

[
−2

3
x tanx − 2i

3
x

]
ρA,22

}
A4(x) = [(1+ x tanx)2+ x2]−1/4

× exp

[
−2

3
x tanx − 2i

3
x − i

2
arg(1+ x tanx + ix)

]
ReρA,12.

(A4)

The phases{φk} and{χk} must obey the following inequalities

06 φ0, χ0 < π/2 (− 1
2 + k)π < φk < ( 1

2 + k)π (− 1
2 + 3k)π < χk < ( 1

2 + 3k)π

(A5)

with k = 1, 2, 3, . . . . For each non-negativek there is a one-to-one correspondence between
time t ∈ (0,∞) and phases(φk, χk), given by

t

2α
= τ(φk) 3t

8α3
= τ(χk). (A6)

The function

τ(x) =
∣∣∣ x

cosx

∣∣∣ exp(x tanx) (A7)

is monotonic on each interval specified under (A5).
For i = 1, 2 one proves that on a fixed interval (A5) damping parameter0i possesses

precisely one minimum and no maxima. The minima are given by01(φk = kπ) = 0 and
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02(χk = 3kπ) = 0, with integerk non-negative. Upon substitutingφk = kπ + ε and
χk = 3kπ + ε in (A4), (A6), and (A7), and retaining leading orders inε only, we arrive at

α201 = 1
2(1+ k2π2)−1(t − 2kπα)2 α2�1 = 2αt − 2kπα2

α202 = 1
32α
−4(1+ 9k2π2)−1(t − 8kπα3)2 α2�2 = − 1

2α
−1t − 2kπα2.

(A8)

Obviously, the contributions in (A3) containing phaseχk relate to the slow revival dynamics,
whereas those containing phaseφk relate to the fast revival dynamics. The terms with
summation indexk = 1, 2, 3, . . . generate the twokth revivals; from (A8) one finds the
slow and fast revival times as 8kπα3 and 2kπα, respectively. The terms withk = 0
describe the two collapses, with the slow and fast collapse times being equal to 4

√
2α2 and√

2, respectively. Finally, note that fork = 0 the imaginary part of factor exp[−iα2�2]
becomes zero at all revival times of the fast dynamics. This explains why in figure 1 each
revival of Rabi oscillations coincides with a maximum in entropy.

All of the above results are valid under the condition thatα be large. Numerical tests
demonstrate that forα2 > 25 agreement between (A3) and the exact result (11) is very
good.
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